On Optimal Weighting Scheme in Model Averaging
نویسنده
چکیده
Abstract Model averaging is an alternative to model selection and involves assigning weights to different models. A natural question that arises is whether there is an optimal weighting scheme. Various authors have shown their existence in others methodological frameworks. This paper investigates the derivation of optimal weights for model averaging using square error loss. It is shown that though these weights may exist in theory and depend on model parameters; once estimated they are no longer optimal. It is demonstrated using an example of linear regression that model averaging estimators with these estimated weights are unlikely to outperform post-model selection and others model averaging estimators. We provide a theoretical justification for this phenomenon.
منابع مشابه
Compression-Based Averaging of Selective Naive Bayes Classifiers
The naive Bayes classifier has proved to be very effective on many real data applications. Its performance usually benefits from an accurate estimation of univariate conditional probabilities and from variable selection. However, although variable selection is a desirable feature, it is prone to overfitting. In this paper, we introduce a Bayesian regularization technique to select the most prob...
متن کاملSelecting Weighting Factors in Logarithmic Opinion Pools
A simple linear averaging of the outputs of several networks as e.g. in bagging 3], seems to follow naturally from a bias/variance decomposition of the sum-squared error. The sum-squared error of the average model is a quadratic function of the weighting factors assigned to the networks in the ensemble 7], suggesting a quadratic programmingalgorithm for nding the \optimal"weighting factors. If ...
متن کاملOptimal Combination of Multiple Atmospheric GCM Ensembles for Seasonal Prediction
An improved Bayesian optimal weighting scheme is developed and used to combine six atmospheric general circulation model (GCM) seasonal hindcast ensembles. The approach is based on the prior belief that the forecast probabilities of tercile-category precipitation and near-surface temperature are equal to the climatological ones. The six GCMs are integrated over the 1950–97 period with observed ...
متن کاملGeneralized mixture operators using weighting functions: A comparative study with WA and OWA
In the context of multiple attribute decision making, we present an aggregation scheme based on generalized mixture operators using weighting functions and we compare it with two standard aggregation methods: weighted averaging (WA) and ordered weighted averaging (OWA). Specifically, we consider linear and quadratic weight generating functions that penalize bad attribute performances and reward...
متن کاملRegularization and Averaging of the Selective Naive Bayes classifier
Naïve Bayes classifier has proved to be very effective on many real data applications. Its performances usually benefit from an accurate estimation of univariate conditional probabilities and from variable selection. However, although variable selection is a desirable feature, it is prone to overfitting. In this paper, we introduce a new regularization technique to select the most probable subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014